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Abstract

Based on an earlier work by the authors, we investigate the Riemann prob-
lem for the shallow water equations with variable topography, and we provide
here for the first time a complete description of the Riemann solution, exis-
tence, uniqueness, and the case of multiple solutions of the Riemann problem
are investigated. Computing strategy and algorithms for Riemann solutions
are presented. Using these computing solutions of local Riemann problem,
we build the Godunov scheme which turns our to be well-balanced and of
quasi-conservative form. We also provide numerical tests for the Godunov
scheme. In strictly hyperbolic domains, tests show that the scheme provides
the convergence to the exact solution. In resonance regions, tests also provide
the convergence, except that when the Godunov scheme takes its parameter
states on the resonance surfaces.

Keywords: Shallow water equations, conservation law, source, Riemann
problem, Godunov scheme.

1. Introduction

In this paper we aim at building the Godunov scheme for the initial-
value problem of the following one-dimensional shallow water equations with
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variable topography

∂th+ ∂x(hu) = 0,
∂t(hu) + ∂x(h(u2 + g h

2
)) = −gh∂xa,

(1)

where h is the height of the water from the bottom to the surface, u is the
velocity, g is the gravity constant, and a = a(x), x ∈ RI , is the height of the
bottom from a given level. Often, the system with source (1) is supplemented
with the trivial equation (as first proposed in LeFloch (1989))

∂ta = 0, (2)

so that the new system is hyperbolic and in nonconservative form and can be
handled within the Dal Maso-LeFloch-Murat theory by Dal Maso, LeFloch,
and Murat (1995), Hou and LeFloch (1994), LeFloch (1988), LeFloch and
Liu (1993). Since the Godunov scheme involves the solving of local Riemann
problems, Riemann solutions of (1)-(2) should be constructed in such a way
that they are reliable for computing purposes. Recall that the Riemann
problem for (1)-(2) is the Cauchy problem with initial data (Riemann data)
of the form

(h, u, a)(x, 0) =

{
(hL, uL, aL), x < 0,
(hR, uR, aR), x > 0.

(3)

We therefore review the Riemann problem for (1)-(2), provide the explicit
constructions of solutions, observe the existence for large domain of initial
data and the uniqueness. Moreover, we also describe the case of multiple
solutions, giving necessary and sufficient conditions for the existence of three
distinct solutions.

In our previous work LeFloch and Thanh (2007), the Riemann prob-
lem for (1)-(2) is investigated, where constructions of Riemann solutions
were given. The results in our earlier work LeFloch and Thanh (2007) is
improved in this paper where we present a complete description of the Rie-
mann solution: existence, uniqueness, and the case of multiple solutions of
the Riemann problem are carefully investigated. Besides, in a recent work
Chinnayya, LeRoux, and Seguin (2004) the authors also addressed the Go-
dunov method for system (1)-(2) where the exact Riemann solvers are given
using their method of ”continuation”: starting the construction as if the bot-
tom is flat, they try to make the construction for non-flat bottom emerge.
And they construct Riemann solutions using this method in the region where
the nonlinear characteristic fields are separated by the linearly degenerate one
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corresponding to the eigenvalue identically zero. In this region, the solution
with non-flat bottom still follows the two wave curves in the nonlinear char-
acteristic fields with an early jump by a stationary wave before reaching the
intersection point of these two curves. The number of waves in a Riemann
solution is not bigger than the number of characteristic fields. This gives
a geometrical explanation for the method. However, for Riemann data in
the other two strictly hyperbolic regions, or of ”cross-region” type, we find
it hard to apply this method. There is always a major difference between
the ”flat-bottom” and ”non-flat-bottom” cases, since one case the system
is strictly hyperbolic, the other case the system is not strictly hyperbolic.
In the non-flat-bottom case new wave curves appear taking the role of the
standard wave curves. In other words, there are new wave curves on which
the solution strictly follows. The number of waves in a Riemann solution
can eventually be bigger than the number of characteristic fields as waves in
the same family can be repeated. The appearance of such new wave curves
cannot be justified from a continuation process. Thus, our goal is to present
computing algorithms for Riemann solutions given by explicit constructions,
and then use these computing solutions of local Riemann problems to build
the Godunov scheme. We also provide numerical tests. In strictly hyperbolic
domains, tests show that the scheme provides the convergence to the exact
solution. In resonance regions, tests also provide the convergence, except
that when the Godunov scheme takes its parameter states on the resonance
surfaces.

As well-known, the system (1) is not strictly hyperbolic as characteristic
fields may coincide on certain surfaces. The study of non-strictly hyperbolic
systems has been attracted many authors. See LeFloch (1989), Marchesin
and Paes-Leme (1986), LeFloch and Thanh (2003), Thanh (2009) for
the model of fluid flows in a nozzle with variable cross-section, Isaacson
and Temple (1995, 1992), GoatinLeFloch (2004), Andrianov and Warnecke
(2004,?) for other models.

It is interesting that the Godunov scheme for (1)-(2) is well-balanced: it
captures exactly stationary waves. We observe that well-balanced scheme for
shallow water equations have been considered by many authors, see Green-
berg and Leroux (1996), Thanh, Fazlul K., and Ismail (2008), Jin and
Wen (2004, 2005), Gallouët, Hérard, and Seguin (2004). The work of dis-
cretization of nonconservative system of balance laws or systems with source
terms also attracts many authors, see for example Greenberg et al (1997),
Botchorishvili, Perthame and Vasseur (2003), Botchorishvili and Pironneau
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(2003), Gosse (2000), Audusse et al (2004) for a single conservation law with
source. Well-balanced schemes were presented in Kröner and Thanh (2005),
Kröner, LeFloch, and Thanh (2008), Jin and Wen (2004, 2005) for the
model of fluid flows in a nozzle with variable cross-section. Well-balanced
schemes for multi-phase flows and other models were studied in Bouchut
(2004), Lallemand and Saurel (2000), Saurel and Abgrall (1999), Ambroso
et al (2009), Thanh and Ismail (2009), etc. See also and the references
therein.

The organization of this paper is as follows. In Section 2 we will recall
basic facts of the system (1)-(2) and provide the computing method for sta-
tionary contact waves. In Section 3 the Riemann problem is revisited, where
we present a new way of constructing solutions by ”gluing” together differ-
ent type of solution structures. Due to this, we can observe the existence of
solutions for a larger domain of initial data. In Section 4 we present comput-
ing strategy for the exact Riemann solvers and then we build the Godunov
scheme. Section 5 is devoted to numerical tests for the Godunov scheme
using our computing exact Riemann solvers, where data belong to strictly
hyperbolic domains. Here we provide test cases with different Riemann so-
lutions. We measure the errors and observe that the errors get smaller and
smaller when the mesh sizes get smaller and smaller. Section 6 is devoted
to numerical tests for the Godunov scheme, where data belong to resonance
regions. We observe the cases the tests give convergence and the case the
test gives unsatisfactory results.

2. Shallow water equations

2.1. Wave curves

As seen by LeFloch and Thanh (2007), if we choose the dependent vari-
able (h, u, a) = (h, u, a)(x, t), the Jacobian matrix of the system admit three
real eigenvalues:

λ1(U) := u−
√
gh < λ2(U) := u+

√
gh, λ3(U) := 0, (4)

together with the corresponding eigenvectors:

r1(U) :=
(
h−

√
gh0
)
, r2(U) :=

(
h
√
gh0
)
, r3(U) :=

(
g h− guu2 − gh

)
,

(5)
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so that the system (1)-(2) is hyperbolic, but not strictly hyperbolic. More
precisely, the first and the third characteristic fields may coincide:

(λ1(U), r1(U)) = (l3(U), r3(U))

on the surface
C+ := {(h, u, a)| u =

√
gh} (6)

of the phase domain. And, the second and the third characteristic fields may
coincide:

(λ2(U), r2(U)) = (l3(U), r3(U))

on the surface
C− := {(h, u, a)| u = −

√
gh} (7)

of the phase domain. The surfaces C±, in the following referred to as the
resonance surfaces, separate the phase domain in the (h, u, a)-space into three
sub-domains in which the system is strictly hyperbolic:

G1 := {(h, u, a) ∈ RI + ×RI ×RI +| λ1(U) > λ3(U)},
G2 := {(h, u, a) ∈ RI + ×RI ×RI +| λ2(U) > λ3(U) > λ1(U)},
G3 := {(h, u, a) ∈ RI + ×RI ×RI +| λ3(U) > λ2(U)}.

(8)

It is convenient to set

C := C+∪C−, G+
2 := {(h, u, a) ∈ G2, u ≥ 0}, G−2 := {(h, u, a) ∈ G2, u ≤ 0}.

Obviously, the first and the second characteristic fields (λ1, r1), (λ2, r2) are
genuinely nonlinear in the phase domain, while the third characteristic field
(λ3, r3) is linearly degenerate.

As discussed in LeFloch and Thanh (2007), across a discontinuity there
are two possibilities

(i) either the bottom height a remains constant,

(ii) or the discontinuity is stationary (it propagates with zero speed).

In the first the case (i), the system (1)-(2) becomes the usual shallow water
equations with flat bottom. We can determine the i-shock curve Si(U0)
starting from a left-hand state U0 consisting of all right-hand states U that
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can be connected to U0 by a Lax shock associated with the first characteristic
field is given by

Si(U0) : Ψi(U ;U0) := u−u0±
√
g

2
(h−h0)

√(1

h
+

1

h0

)
= 0, i = 1, 2, (9)

where U = (h, u), h > h0 for i = 1 and h < h0 for i = 2. We also
define the backward i-shock curve SB

i (U0) starting from a right-hand state
U0 consisting of all left-hand states U that can be connected to U0 by a Lax
shock associated with the first characteristic field is given by

SB
i (U0) : Φi(U ;U0) := u− u0 ±

√
g

2
(h− h0)

√(1

h
+

1

h0

)
= 0, i = 1, 2,

(10)
where U = (h, u), h < h0 for i = 1 and h > h0 for i = 2.

Is has also been seen that the bottom height a remains constant through
rarefaction fans. The forward rarefaction curve Ri(U0) starting from a given
left-hand state U0 consisting of all the right-hand states U that can be con-
nected to U0 by a rarefaction wave associate with the first characteristic field
as

Ri(U0) : Ψi(U ;U0) = u− u0 ± 2
√
g(
√
h−

√
h0) = 0, i = 1, 2, (11)

where U = (h, u), h ≤ h0 for i = 1 and h ≥ h0 for i = 2. Given a right-hand
state U0, the backward i-rarefaction curve RB

i (U0) consisting of all left-hand
states U that can be connected to U0 by a rarefaction wave associate with
the first characteristic field is given by

RB
i (U0) : Φi(U ;U0) = u− u0 ± 2

√
g(
√
h−

√
h0) = 0, i = 1, 2, (12)

where U = (h, u), h ≥ h0 for i = 1 and h ≤ h0 for i = 2.
Define the forward and backward wave curves in the (h, u)-plane

Wi(U0) := Si(U0) ∪Ri(U0) = {U | Ψi(U ;U0) = 0},
WB

i (U0) := SB
i (U0) ∪RB

i (U0) = {U | Φi(U ;U0) = 0}, i = 1, 2.
(13)

Besides, it has been seen in LeFloch and Thanh (2007) that the wave curves
W1(U0),WB

1 (U0) being parameterized as h 7→ u = u(h), h > 0, are strictly
convex and strictly decreasing functions. The wave curve W2(U0),WB

2 (U0)
being parameterized as h 7→ u = u(h), h > 0, are strictly concave and strictly
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decreasing functions. The projection of the wave curveW3(U0) in the (h, u)-
plane can be parameterized as h 7→ u = u(h), h > 0, which is a strictly
convex and strictly decreasing function for u0 > 0 and strictly concave and
strictly increasing function for u0 < 0.

In the case (ii), the discontinuity satisfies

[hu] = 0,

[u2

2
+ g(h+ a)] = 0.

(14)

The relations (14) define the stationary-wave curve parameterized by h:

W3(U0) : u = u(h) = h0u0

h
,

a = a(h) = a0 +
u2
0−u2

2g
+ h0 − h.

(15)

The above arguments show that the a-component of Riemann solutions
may change only across a stationary wave. This is important for the dis-
cretization of the source terms later on.

2.2. Equilibrium states

Given a state U0 = (h0, u0, a0) and a bottom level a 6= a0. Let U =
(h, u, a) be the corresponding right-hand state of the stationary contact issu-
ing from the given left-hand state U0. We need to find out h and u in terms
of U0 and a. Multiplying both sides of the second equation of (21) and using
the first equation, we find that h is the root of the nonlinear equation

ϕ(h) = ϕ(U0, a;h) = 2gh3+(2g(a−a0−h0)−u2
0)h

2+h2
0u

2
0 = 0, h > 0. (16)

We have
ϕ(0) = h2

0u
2
0 ≥ 0,

ϕ′(h) = 6gh2 + 2(2g(a− a0 − h0)− u2
0)h,

ϕ′′(h) = 12gh+ 2(2g(a− a0 − h0)− u2
0).

Thus,

ϕ′(h) = 0 iff h = 0, or h = h∗ = h∗(U0, a) :=
u2

0 + 2g(a0 + h0 − a)

3g
.

(17)

If h∗(U0, a) < 0, or a > a0 + h0 +
u2
0

2g
, then ϕ′(h) > 0 for h > 0. Since

ϕ(0) = h2
0u

2
0 ≥ 0, there is no root for (16) if (17) holds. Otherwise, if

a ≤ a0 + h0 +
u2

0

2g
,
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then ϕ′ > 0 for h > h∗ and ϕ′(h) < 0 for 0 < h < h∗. In this case, ϕ admits
a zero h > 0, and in this case it has two zeros, iff

ϕmin := ϕ(h∗) = −gh3
∗ + h2

0u
2
0 ≤ 0,

or

h∗(U0, a) ≥ hmin(U0) :=
(h2

0u
2
0

g

)1/3

, (18)

where h∗ is defined by (17). It is easy to check that (18) holds if and only if

a ≤ amax(U0) := a0 + h0 +
u2
0

2g
− 3

2g1/3 (h0u0)
2/3

= a0 + 1
2g

((gh0)
1/3 − u2/3

0 )2(2(gh0)
1/3 + u

2/3
0 ).

(19)

Observe that (19) implies amax(U0) ≥ a0 and the equality holds only if (h0, u0)
belongs to the surfaces C±. Whenever (19) is fulfilled, the function ϕ in (16)
admits two root denoted by h1(a) ≤ h2(a) satisfying h1(a) ≤ h∗ ≤ h2(a).
Moreover, if the inequality in (19) is strict, i.e., a < amax(U0), then these
two roots are distinct: h1(a) < h∗ < h2(a). Thus, we arrive at the following
lemma.

Lemma 2.1. Given U0 = (h0, u0, a0) and a bottom level a 6= a0. The follow-
ing conclusions holds.

(i)

amax(U0) ≥ a0, amax(U0) = a0 if and only if (h0, u0) ∈ C.

(ii) The nonlinear equation (16) admits a root if and only if the condition
(19) holds, and in this case it has two roots h1(a) ≤ h∗ ≤ h2(a). More-
over, whenever the inequality in (19) is strict, i.e. a < amax(U0), these
two roots are distinct.

(iii) According to the part (ii), whenever (19) is fulfilled, there are two states
Ui(a) = (hi(a), ui(a), a),, where ui(a) = h0u0/hi(a), i = 1, 2 to which a
stationary contact from U0 is possible. Moreover, the locations of these
states can be determined as follows

U1(a) ∈ G1 if u0 > 0,
U1(a) ∈ G3 if u0 < 0,
U2(a) ∈ G2.
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Proof. The parts (i) and (ii) can be easily deduced from the above argument.
To prove (iii), it is sufficient to show that along the projection of W3(U0) on
the (h, u)-plane, the point Umin(U0) = (hmin(U0), umin(U0) := h0u0/hmin(U0)),
where hmin(U0) is defined by (18), belongs to C+ if u0 > 0 and belongs to C−
if u0 < 0, and that Ui(a) ∈ W3(U0), i = 1, 2, such that U2(a) ∈ G2 and U1(a)
is located on the other side of U1(a) with respect to C. Indeed, let us define
a function taking values along the stationary curve W3(U0):

σ(h) := u(h)2 − gh =
h2

0u
2
0

h2
− gh.

Clearly, a point U = (h, u, a) belongs to G1 ∪G3 if and only if σ(h) > 0 and
U belongs to G2 if and only if σ(h) < 0. Since σ(hmin(U0)) = 0, the point
Umin(U0) belongs to Obviously, Umin(U0) ∈ C+ if u0 > 0, and Umin(U0) ∈ C−
if u0 < 0. Thus, we have left to prove that

σ(h1(a)) > 0, σ(h2(a)) < 0. (20)

Since

σ(hmin(U − 0)) = 0, σ′(h) =
−2h2

0u
2
0

h3
− g < 0,

we can see that (20) holds if

h1(a) < hmin(U0) < h2(a). (21)

On the other hand, we have

ϕ(h) > 0, if h < h1(a) or h > h2(a),
ϕ(h) < 0, if h1(a) < h < h2(a).

(22)

And we have

ϕ(hmin(U0)) = 3(h0u0)
2 + (2g(a− a0 − h0)− u2

0)
(h0u0)

4/3

g2/3
.

It is a straightforward calculation to show that the condition

a < amax(U0)

is equivalent to
ϕ(hmin(U0)) < 0.
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This together with (22) establish (21). Lemma 2.1 is completely proved.
From Lemma 2.1, we can construct two-parameter wave sets. The Rie-

mann problem for (1) may therefore admit up to a one-parameter family of
solutions. To select a unique Riemann solution, we impose an admissibility
condition for stationary contacts, known as the monotonicity criterion, as
follows

(MC) (Monotonicity Criterion) Along any stationary curve W3(U0), the
bottom level a is monotone as a function of h. The total variation of
the bottom level component of any Riemann solution must not exceed
|aL−aR|, where aL, aR are left-hand and right-hand cross-section levels.

A similar criterion was used by Isaacson and Temple Isaacson and Temple
(1992, 1995) and by LeFloch and Thanh LeFloch and Thanh (2003), and
by Goatin and LeFloch GoatinLeFloch (2004).

Lemma 2.2. The Monotonicity Criterion implies that any stationary shock
does not cross the boundary of strict hyperbolicity. In other words:

(i) If U0 ∈ G1∪G3, then only the stationary shock based on the value h1(a)
is allowed, and we set h̄(a) = h1(a).

(ii) If U0 ∈ G2, then only the stationary shock using h2(a) is allowed, and
we set h̄(a) = h2(a).

Thus, h̄(a) is the admissible h-value of a right-hand state U = (h =
h̄(a), u, a) of the stationary wave from a given left-hand state U0 = (h0, u0, a0).

Proof. Recall that the Rankine-Hugoniot relations associate the linearly
degenerate field (14) implies that the component a can be expressed as a
function of h:

a = a(h) = a0 +
−u2 + u2

0

2g
− h+ h0,

where

u = u(h) =
h0u0

h
.

Thus, taking the derivative of a with respect to h, we have

a′(h) = −uu′(h)
g
− 1 = uh0u0

gh2 − 1

= u2

gh
− 1 = (u2−gh)

gh

10



which has the same sign as u2−gh. Thus, a = a(h) is increasing with respect
to h in the domains G1, G3 and is decreasing in the domain G2. Thus, in
order that a = a(h) is monotone as a function of h, the point (h, u, a) must
stay in the closure of the domain containing (h0, u0, a0). The conclusions of
(i) and (ii) then follow.

How to compute the roots of the equation (16)? The above argument
shows that whenever (19) is satisfied, the equation (16) admits two roots
h1(a), h2(a) satisfying

h1(a) ≤ hmin =
(h2

0u
2
0

g

)1/3

≤ h∗ =
u2

0 + 2g(a0 + h0 − a)

3g
≤ h2(a) (23)

and the inequalities are all strict whenever the inequality in (19) is strict.
Since 0 < h1(a) ≤ hmin ≤ h∗ and

ϕ(0) ≥ 0,
ϕ(h∗) ≤ 0, ϕ(hmin) ≤ 0,

the root h1(a) of (16) can be computed using the regula falsi method with
the starting interval [0, hmin], or [0, h∗]. And since h2(a) ≥ h∗ and ϕ′(h) >
0, ϕ”(h) > 0, h > h∗, the root h2(a) can be computed using Newton’s method
with any starting point larger than h∗. We summarize this in the following
lemma.

Lemma 2.3. (Finding the water height of stationary contacts) The
root h1(a) of (16) can be computed using the regula falsi method for the

starting interval [0, hmin], where hmin =
(

h2
0u2

0

g

)1/3

, or [0, h∗], where h∗ =

u2
0+2g(a0+h0−a)

3g
, while the root h2(a) can be computed using Newton’s method

with any starting point larger than h∗.

3. The Riemann problem revisited

From the general theory of nonconservative systems of balance laws, it is
known that if Riemann data belongs to a sufficiently small ball in a strictly
hyperbolic region, then the Riemann problem admits a unique solution. It
is worth to note that this result no longer holds if any of these assumptions
fails due to the resonance.

Our goal in this section to to provide all possible explicit constructions for
Riemann solutions, investigating when Riemann data are distributed around
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the strictly hyperbolic boundary C±. There are several improvements in the
constructions of Riemann solutions in this paper over the ones in our previous
work LeFloch and Thanh (2007). First, we can determine larger domains of
existence by combining constructions in LeFloch and Thanh (2007) together
due to connectivity. Second, the domains where there is a unique solution
or there are several solutions are estimated. Under the transformation x 7→
−x, u 7→ −u, a left-hand state U = (h, u, a) in G2 or G3 will be transferred
to the right-hand state V = (h,−u, a) G2 or G1, respectively. Thus, the
construction for Riemann data around C− can be obtained from the one for
Riemann data around C+. We thus construct only the case where Riemann
data are in G1 ∪ C+ ∪ G2 and we separate into two regimes on which a
corresponding construction based on the left-hand state UL is given:

• Regime (A): UL ∈ G1 ∪ C+;

• Regime (B): UL ∈ G2;

For each construction, depending on the location of the right-hand states UR

and the sign aR − aL there will be different types of solutions or the results
on the existence and uniqueness.

As in LeFloch and Thanh (2007), to construct Riemann solutions of (1)-
(2), we project all the wave curves on the (h, u)-plane using the following
notations:

(i) U0 denotes the state resulted from a stationary contact wave from U ;

(ii) Wk(Ui, Uj) (Sk(Ui, Uj), Rk(Ui, Uj)) denotes the kth-wave (kth-shock,
kth-rarefaction wave, respectively) connecting the left-hand state Ui

to the right-hand state Uj, k = 1, 2, 3;

(iii) Wm(Ui, Uj)⊕Wn(Uj, Uk) indicates that there is an mth-wave from the
left-hand state Ui to the right-hand state Uj, followed by an nth-wave
from the left-hand state Uj to the right-hand state Uk, m,n ∈ {1, 2, 3}.

3.1. Regime (A): Eigenvalues at UL have the same sign

Let Ḡ1 denote the closure of G1. We assume that UL ∈ Ḡ1, or equivalently
λi(UL) ≥ 0, i = 1, 2, 3.
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Lemma 3.1. Consider the projection on the (h, u)-plan. To every U =
(h, u) ∈ G1 there exists exactly one point U# ∈ S1(U) ∩ G2+ such that the
1-shock speed λ̄1(U,U

#) = 0. The state U# = (h#, u#) is defined by

h# =
−h+

√
h2 + 8hu2/g

2
, u# =

uh

h#
.

Moreover, for any V ∈ S1(U), the shock speed λ̄1(U, V ) > 0 if and only if V
is located above U# on S1(U).

Construction (A1). In this case (the projection on (h, u)-plane of) UR is
located in a ”higher” region containing UL in the (h, u)-plane. See Figure 1.

If aL ≥ aR (or aL < aR ≤ amax(UL)), the solution begins with a stationary
contact upward (downward, respectively) alongW3(UL) from UL to the state
U o

L ∈ W3(UL) ∩G1, shifting the level aL directly to the level aR. Let

{UM = (hM , uM , aR)} =W1(U
o
L) ∩WB

2 (UR).

Providing that λ1(U
o
L, UM) ≥ 0, or equivalently, as seen from Lemma 3.1,

hM ≤ ho#
L , the solution can continue by a 1-wave from U o

L to UM , followed
by a 2-wave from UM to UR. Thus, the solution is

W3(UL, U
o
L)⊕W1(U

o
L, UM)⊕W2(UM , UR). (24)

This construction can be extended ifWB
2 (UR) lies entirely aboveW1(U

o
L). In

this case let I and J be the intersection points of W1(U
o
L) and WB

2 (UR) with
the axis {h = 0}, respectively:

{I} =W1(U
o
L) ∩ {h = 0}, {J} =WB

2 (UR) ∩ {h = 0}, (25)

then the solution can be seen as a dry part Wo(I, J) between I and J . Thus,
the solution in this case is

W3(UL, U
o
L)⊕R1(U

o
L, I)⊕Wo(I, J)⊕R2(J, UR).

Remark 1. As seen by Lemma 2.1, if aL < aR, the condition

aR ≤ amax(UL)

is necessary for the stationary contact W3(UL, U
o
L). Therefore, if this condi-

tion fails, there is no solution even if UL = UR. The necessary and sufficient
conditions for the existence of the solution (24) is that U o#

L is located below
or on the curveWB

2 (UR). This domain clearly covers a large crossing-strictly-
hyperbolic-boundary neighborhood of UL.

13



Figure 1: Construction (A1), aL > aR: A solution of the form (24)
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Construction (A2). Roughly speaking, this case concerns with the fact that
UR moves limitedly downward from the case G1. Instead of using ”complete”
stationary contact from UL to U o

L as in the first possibility, the solution now
begins with a ”half-way” stationary contact W3(UL, U1) from UL = (h, u, aL)
to some state U1 = U o

L(a) = (h, u, a) ∈ W3(UL), where a between aL and aR.
The solution then continues by a 1-shock wave with zero speed from U1 to
U2 = U#

1 ∈ W1(U1) ∩ G2. Observe that U2 still belongs to W3(UL), since
h2u2 = h1u1 = hLuL, as indicated by Lemma 3.1. The solution continues by
a stationary contact from U2 to a state UM(a) ∈ W3(UL). The set of these
points UM(a), a ∈ [aL, aR] forms a curve pattern denoted by L. Whenever

WB
2 (UR) ∩ L 6= ∅

there is a solution containing three discontinuities having the same zero speed
of the form

W3(UL, U1)⊕ S1(U1, U2)⊕W3(U2, UM)⊕W2(UM , UR). (26)

See Figure 2.

Remark 2. The necessary and sufficient conditions for the existence of the
solution (26) is that U o#

L is located above or on the curve WB
2 (UR), and U#o

L

is located below or on the curve WB
2 (UR). This domain covers a region in

G2+ and G1 which is ”quite far away” from UL.

It is interesting that at the limit a = aR at the first jump, we get the first
possibility. If a = aL, then the solution simply begins with a 1-shock wave
with zero speed followed by a stationary contact shifting a from aL to aR.
This limit case can be connected to the following possibility.
Construction (A3). The solution begins with a strong 1-shock wave from UL

to any state U ∈ W1(UL) ∩G2 such that λ1(UL, U) ≤ 0. This shock wave is
followed by a stationary contact to a state U o shifting a from aL to aR. The
set of these states U o form a curve denoted by Wa

1 (UL). Whenever

∅ 6=WB
2 (UR) ∩Wa

1 (UL) = {U o
M} ∈ G2, and λ̄2(U

o
M , UR) ≥ 0, (27)

there will be a Riemann solution defined by

S1(UL, UM)⊕W3(UM , U
o
M)⊕W2(U

o
M , UR). (28)

15



Figure 2: Construction (A2), aL > aR: A solution of the form (26)
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Figure 3: Construction (A3), aL > aR: A solution of the form (28)
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In the limit case of (26) where U1 ≡ UL, the solution (26) coincides with the
solution (28). See Figure 3.

Let K denote the lower limit state on W1(UL) that the solution (28)
makes sense, and let Ko ∈ G2 denote the right-hand state resulted from a
stationary contact from K shifting aL to aR. Thus, we have

{K} =W1(UL) ∩ C−, if aL ≥ aR,
{K} ∈ W1(UL) such that amax(K) = aR, if aL < aR.

(29)

Remark 3. The solution (28) makes sense if U#o
L is above or on the curve

WB
2 (UR), and Ko lies below or on the curve WB

2 (UR) and λ̄3(K
o, UR) ≥ 0.

The union of the wave patterns W1(U1)∪L∪Wa
1 (UL) form a continuous

curve. The Riemann problem thus admits a solution whenever WB
2 (UR)

intersects W1(U1) ∪ L ∪ Wa
1 (UL) or WB

2 (UR) intersects with {h = 0} at a
point above the point I. We can see that this happens for a large domain of
UR containing UL. See Figures 1, 2, and 3.

If the wave pattern L lies entirely on one side with respect to the curve
WB

2 (UR), then WB
2 (UR) intersects either W1(U1) or Wa

1 (UL) at most one
point. Therefore, then (24) or (28) is the unique solution. Besides, ifWB

2 (UR)
intersects the wave pattern L, and if h#o

L ≥ ho#
L , then the point U#o

L is located
below the point U o#

L on the curve W3(UL). Thus, the curve WB
2 (UR) does

not meetW1(U1) norWa
1 (UL), except possibly at the endpoints U#o

L ∈ L and
U o#

L ∈ L. In this case, (26) is the sole solution. In summary, the Riemann
problem for (1)-(2) always has at most one solution whenever h#o

L ≥ ho#
L .

In the case where h#o
L < ho#

L , there can be three solutions, as WB
2 (UR)

can meet all the three curve patterns W1(U1),L and Wa
1 (UL), or

h#o
L < ho#

L , Φ2(U
#o
L ;UR) > 0 > Φ2(U

o#
L ;UR), (30)

where the function Φ2(U ;UR) is defined by (13). See Figure 4.
The above argument leads us to the following theorem.

Theorem 3.2 (Riemann problem for shallow water equations). Given a left-
hand state UL ∈ G1. Depending on the location of the right-hand state UR

we have the following conclusions.

(a) Existence. The Riemann problem (1)-(3) admits a solution if Qo

defined in Construction (A3) lies below or on the curve WB
2 (UR), and

that if WB
2 (UR) intersects with Wa

1 (UL) at some point U o
M ∈ G1−, then

λ̄2(U
o
M , UR) ≥ 0.

18



Figure 4: Non-uniqueness: Three admissible Riemann solutions of the form (24), (26),
and (28)
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(b) Regime of uniqueness. The Riemann problem (1)-(3) has at most
one solution if

– either h#o
L ≥ ho#

L ;

– or h#o
L < ho#

L , and the states U#o
L and U o#

L are located on the same
side with respect to the curve WB

2 (UR).

(c) Multiple solutions. If h#o
L < ho#

L , and if the state U#o
L lies above the

curve WB
2 (UR) while the state U o#

L lies below the curve WB
2 (UR), then

the Riemann problem (1)-(3) has three solutions.

Example. We provide some numerical experiments to illustrate two situa-
tions: h#o

L > ho#
L , and h#o

L < ho#
L corresponding to the two cases aL > aR

(see Tables A1-A3) and aL < aR (see Tables A4, A5). We take at random
the state UL and aR.

(a) aL > aR: all experiments show that h#o
L > ho#

L . In Table A1, UL ∈ G1.

Table A1

States UL U#o
L U o#

L

Water Height h 0.5 1.1930011 1.1171275
Velocity u 4 1.6764444 1.790306
Bottom Level a 1 0.9 0.9

In Table A2, UL ∈ C+.

Table A2

States UL U#o
L U o#

L

Water Height h 1 1.3075478 1.2558035
Velocity u 3.1304952 2.3941726 2.4928225
Bottom Level a 1 0.9 0.9

In Table A3, UL ∈ G1 is far away from C+.

Table A3

States UL U#o
L U o#

L

Water Height h 0.01 0.54763636 0.44902891
Velocity u 10 0.18260292 0.22270281
Bottom Level a 1 0.9 0.9
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(b) aL < aR: all experiments show that h#o
L < ho#

L . In Table A4, UL ∈ G1.

Table A4

States UL U#o
L U o#

L

Water Height h 0.5 0.86127059 0.96534766
Velocity u 4 2.3221506 2.0717925
Bottom Level a 0.9 1 1

In Table A5, UL ∈ G1 is far away from C+.

Table A5

States UL U#o
L U o#

L

Water Height h 0.01 1.2748668 1.3718425
Velocity u 10 0.78439566 0.72894668
Bottom Level a 0.9 1 1

Remark 4. We conjecture that if aL > aR, then h#o
L > ho#

L , and if aL < aR,
then h#o

L < ho#
L . If this conjecture is verified, then Theorem 3.2 implies that

when aL ≥ aR, the Riemann problem always has at most one solution for
UL ∈ G1.

3.2. Regime (B): Eigenvalues at UL have opposite signs

In this subsection we consider the case where the left-hand state UL moves
downward from the Regime (A): UL ∈ Ḡ2, or λ1(UL) < 0 = λ3(UL) < λ2(UL).
Construction (B1). For UR in a “higher” position, there can be two types of
solutions depending on whether aL ≥ aR.

If aL > aR a solution can be constructed as follows. The solution begins
from UL with a 1-rarefaction wave until it reaches C+ at a state U1 ∈ W1(UL)∩
C+. A straightforward calculation gives

U1 =
(

(
uL

3
√
g

+
2

3

√
hL)2,

1

3
uL +

2

3

√
ghL, aL

)
.

This rarefaction wave can be followed by a stationary jump W3(U1, U2) into
G1. This stationary wave is possible since aL ≥ aR. Let {U3} = W1(U2) ∩
WB

2 (UR). The solution is then continued by a 1-wave from U2 to U3, followed
by a 2-wave from U3 to UR. Thus, the solution is given by the formula

R1(UL, U1)⊕W3(U1, U2)⊕W1(U2, U3)⊕W2(U3, UR). (31)
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Figure 5: Construction (B1), aL > aR: A solution of the form (31)

The construction makes sense if λ̄1(U2, U3) ≥ 0, which means U3 has to be
above U#

2 onW1(U2). This construction can also be extended ifWB
2 (UR) lies

entirely above W1(U2). In this case let I and J be the intersection points of
W1(U2) and WB

2 (UR) with the axis {h = 0}, respectively:

{I} =W1(U2) ∩ {h = 0}, {J} =WB
2 (UR) ∩ {h = 0}. (32)

Then, the solution can be seen as containing a dry part Wo(I, J) between I
and J . Thus, the solution in this case is

R1(UL, U1)⊕W3(U1, U2)⊕W1(U2, I)⊕Wo(I, J)⊕R2(J, UR).

See Figure 5.
If aL ≤ aR a solution of another type can be constructed as follows. To

each U ∈ C+, a stationary contact to U o ∈ G2 downing a = aR to a = aL is
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possible, since aR > aL. The set of all these states U o form a curve denoted
by Ca

+. Let
{U1} =W1(UL) ∩ Ca

+.

Then, the solution begins by a 1-wave W1(UL, U1), followed by a stationary
jump W3(U1, U2 = U o

1 ) to U2 ∈ C+. Let {U3} = W1(U2) ∩ WB
2 (UR). The

solution is then continued by a 1-rarefaction wave from U2 to U3, followed by
a 2-wave from U3 to UR. Thus, the solution is given by the formula

W1(UL, U1)⊕W3(U1, U2)⊕R1(U2, U3)⊕W2(U3, UR). (33)

The construction makes sense if λ1(U3) ≥ 0, or U3 ∈ Ḡ1. This construction
can also be extended if WB

2 (UR) lies entirely above W1(U2). In this case
let I and J be the intersection points of W1(U2) and WB

2 (UR) with the axis
{h = 0}, respectively:

{I} =W1(U2) ∩ {h = 0}, {J} =WB
2 (UR) ∩ {h = 0}. (34)

Then, the solution can be seen as containing a dry part Wo(I, J) between I
and J . Thus, the solution in this case is

W1(UL, U1)⊕W3(U1, U2)⊕R1(U2, I)⊕Wo(I, J)⊕R2(J, UR).

See Figure 6.
The wave structure of the solutions (31) and (32) are the same, but the

state at which the solution reaches the strictly hyperbolic boundary C using
a different wave. However, one may argue that in both cases the solution
uses a stationary contact to reach C+ from either side of C+. Moreover, all
the states in the solution (UL, U1, U2, U3, UR) can be in an arbitrarily small
ball center on C+.
Construction (B2). This case holds only when aL > aR, where there is an
interesting phenomenon as wave speeds associate with different characteristic
fields coincide and all equal zero. The solution therefore contain three waves
with the same zero speed.

The solution begins with a 1-rarefaction wave until it reached C+ at U1. At
U1, the solution may jump to G1 using a ”half-way” stationary wave to a state
M = M(a) = U o

1 (a) from the bottom height aL to any a ∈ [aR, aL]. Then, the
solution can continue by a 1-shock with zero speed from M to N = N(a) =
N#(a) ∈ G+

2 , followed by a stationary wave from N to P = P (a) = N o(a)
with a shift in a-component from a to aR. The set of these states P (a) form
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Figure 6: Construction (B1), aL ≤ aR: A solution of the form (32)

24



Figure 7: Construction (B2), aL > aR: A solution of the form (35)

a curve pattern L. So, whenever ∅ 6=WB
2 (UR) ∩ L = {P = P (a)}, there is a

Riemann solution containing three zero-speed waves of the form

R1(UL, U1)⊕W3(U1,M(a))⊕S1(M(a), N(a))⊕W3(N(a), P (a))⊕W2(P (a), UR).
(35)

See Figure 7.
Observe that this solution coincides with the one in the Construction

(B1) if the first stationary wave from U1 to M = U2 shifts a-component from
aL directly to aR. The other limit case where the first stationary wave to G1

is not used gives a connection to the following possibility.
Construction (B3). In this case the Riemann data can be altogether in a
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arbitrarily small ball in G2. Assume first that aL ≥ aR. Let

U1 =W1(UL) ∩ C+, and U0
1 ∈ G2 + resulted by W3(U1, U

o
1 ),

K =W1(UL) ∩ C−, and K0 ∈ G2 − resulted by W3(K,K
o).

(36)
From any state U ∈ W1(UL), where λ1(UL) ≤ 0 (UL is below U1 or coincides
with U1), we use a stationary jump to a state U o, shifting the bottom height
from aL down to aR. The set of these states U o form a ”composite” curve as

Wa
1 (UL) := {U o : ∃W3(U,U

o) shifting aL to aR,
U = (h, u, aL) ∈ W1(UL), λ1(U) ≤ 0}. (37)

The curve Wa
1 (UL) is thus a path between U o

1 and Ko. Whenever ∅ 6=
WB

2 (UR) ∩Wa
1 (UL) = {U o

M}, a Riemann solution can be determined by

W1(UL, UM)⊕W3(UM , U
o
M)⊕W2(U

o
M , UR), (38)

where UM ∈ W1(UL), provided UR ∈ G2 or λ̄2(U
o
M , UR) ≥ 0. See Figure 8.

Second, consider the case aL < aR. Let Ca
+ as in the case for the solution

of the type (38). To each U ∈ C±, a stationary contact to U o ∈ G2 downing
back a = aR to a = aL is possible, since aR > aL. The set of all these states
U o form two curves denoted by Ca

±. Let

{U1} =W1(UL) ∩ Ca
+, and U0

1 ∈ C+ resulted by W3(U
o
1 , U1),

{K} ∈ W1(UL), and K0 ∈ C− resulted by W3(K
o, K)

(39)
decreasing aR to aL. From any state U ∈ W1(UL), λ1(U) ≤ λ1(U1), there is
a stationary jump to a state U o, shifting the bottom height from aL to aR.
The set of these states U o form a composite curve also denoted by Wa

1 (UL).
Whenever ∅ 6= WB

2 (UR) ∩ Wa
1 (UL) = {U o

M}, a Riemann solution can be
determined by

W1(UL, UM)⊕W3(UM , U
o
M)⊕W2(U

o
M , UR), (40)

where UM ∈ W1(UL), provided UR ∈ G2 or λ̄2(U
o
M , UR) ≥ 0.

Remark 5. In both cases aL > aR and aL ≤ aR, the condition forWB
2 (UR)∩

Wa
1 (UL) 6= ∅ is that U0

1 lies above WB
2 (UR) and Ko lies below WB

2 (UR). See
Figure 9.
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Figure 8: Construction (B3), aL > aR: A solution of the form (38)
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Figure 9: Construction (B3), aL < aR: A solution of the form (40)
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Figure 10: Regime (B): Solving the question whether ho
1 < h#

2 would determine the
uniqueness of the Riemann problem or there can be multiple solutions for UL ∈ G2 and
aL > aR (see Theorem 3.3).

Let us now we discuss about the existence and uniqueness. Assume first
that aL ≤ aR. In this case, only Constructions (B1) and (B3) are available.
The limit case of (31) of (B1) when U3 ≡ U2 coincides with the limit case of
(38) of (B3). Thus, the unionW1(U2)∪Wa

1 (UL) form a continuous decreasing
curve (the curve can be considered as the graph of u being a decreasing
function of h) and that W1(U2) and Wa

1 (UL) meets only at one point U2.
Since WB

2 (UR) is an increasing curve, there always a unique intersection
point of WB

2 (UR) and the union W1(U2)∪Wa
1 (UL) if Ko lies below or on the

curve WB
2 (UR). This implies that the Riemann problem for (1)-(2) always

admits a unique solution if Ko lies below or on the curve WB
2 (UR).

Next, assume that aL > aR. Let U o
1 ∈ G2 denote the state resulted from

a stationary wave from U1 ∈ C+. Observe that both U o
1 and U#

2 belong to
W3(U1). Whenever U o

1 lies above U# on W3(U1), there are three distinct
solutions. Otherwise, there is at most one solution. See Figure 10.
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Theorem 3.3 (Riemann problem for shallow water equations). Given a left-
hand state UL ∈ G2.

(a) Existence. The Riemann problem (1)-(3) admits a solution if Ko lies
below or on the curve WB

2 (UR), and that if WB
2 (UR) intersects with

Wa
1 (UL) at some point U o

M ∈ G1−, then λ̄2(U
o
M , UR) ≥ 0.

(b) Regime of uniqueness. The Riemann problem (1)-(3) has at most
one solution if

– either aL ≤ aR;

– or aL > aR, ho
1 ≥ h#

2 , where U2 is defined in (31);

– or aL > aR, ho
1 < h#

2 , and the states U o
1 and U#

2 are located on the
same side with respect to the curve WB

2 (UR).

(c) Multiple solutions. If aL > aR, ho
1 < h#

2 , and U o
1 lies above the

curveWB
2 (UR) and U#

2 lies below the curveWB
2 (UR), then the Riemann

problem (1)-(3) has three solutions.

Example. We provide some numerical experiments computing ho
1, h

#
2 to illus-

trate the cases of Theorem 3.3 (see Tables B1, B2, and B3). All experiments
give the same result: ho

1 > h#
2 .

Table B1

States UL U o
1 U#

2

Water Height h 3 1.819500899801235 1.768961248574716
Velocity u 0.5 3.032474262659020 3.119112786658156
Bottom Level a 1.1 1.000000000000000 1.000000000000000

Table B2

States UL U o
1 U#

2

Water Height h 3 1.707571536932233 1.656818524474798
Velocity u 0.1 2.901359698616083 2.990236508448978
Bottom Level a 1.1 1.000000000000000 1.000000000000000
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Table B3

States UL U o
1 U#

2

Water Height h 3 3.187878980786353 2.574902018055705
Velocity u 1 1.969891931767155 2.438841182952260
Bottom Level a 2 1.000000000000000 1.000000000000000

Remark 6. We conjecture that ho
1 > h#

2 . If this conjecture is verified, then
Theorem 3.3 implies that the Riemann problem always has at most one
solution for UL ∈ G2.

3.3. Continuous dependence of the set of solutions

As seen in the previous subsections, Riemann solutions are constructed
based on a given left-hand state UL. The Riemann problem for (1)-(2) ad-
mits up to three solutions for data in certain regions. Therefore, this implies
that the initial-value problem for (1)-(2) is ill-posed. However, connectivity
between the types of Riemann solutions helps to determine the continuous
dependence of the set of solutions on Riemann data. This means that the
Haussdoff distance between the sets of all solutions of the Riemann problem
depends continuously on the Riemann data. In fact, we first note that for
each construction (A) and (B), the structure of solution changes continu-
ously when UR moves to make the case-to-case change. For example, the
Construction (A1) changes continuously to (A2), the case (A2) itself changes
continuously to (A3). Similar remarks for the cases (B1), (B2) and (B3),
as observed earlier for the continuity of the wave patterns. Thus, the set
of solutions depends continuously on the right-hand side UR for each case
UL ∈ G1 ∪ C+ and UL ∈ G2. In order to show that the set of solutions de-
pends continuously on Riemann data, we weed only to point out that when
UL moves from G1 to G2, the change in structure of solution is continuous.
But this is true, since when UL tends to C+ on each side, the solution of the
Construction (A1) and (B1) approach to each other, and the solution of the
Construction (A3) and (B3) approach to each other as long as the solutions
make sense. If aL ≥ aR, these types eventually coincide on C+. Thus, we
arrive at the following theorem.

Theorem 3.4 (Continuous dependence). The set of solutions of the Rie-
mann problem for (1)-(2), whenever it exists, depends continuously on the
Riemann data.
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4. A Godunov-type algorithm

4.1. A well-balanced, quasi-conservative scheme

Given a uniform time step ∆t, and a spacial mesh size ∆x, setting xi =
i∆x, i ∈ Z, and tn = n∆t, n ∈ N, we denote Un

i to be an approximation of
the exact value U(xi, t

n). Set

U =

(
h
hu

)
, F (U) =

(
hu

h(u2 + g h
2
)

)
, S(U) =

(
0
−gh

)
∂xa.

The system (1)-(2) can be written in the compact form

∂tU + ∂xF (U) = S(U)∂xa, t > 0, x ∈ RI , (41)

Let us be given the initial condition

U(x, 0) = U0(x), x ∈ RI , (42)

Then, the discrete initial values U0
i are given by

U0
i =

1

∆x

∫ xi+1/2

xi−1/2

U0(x)dx. (43)

Suppose Un is known and Un is constant on each interval (xi−1/2, xi+1/2) vi
i ∈ Z. On each cell (xi−1, xi) we determine the exact solution of the Riemann
problem for

∂tU(x, t) + ∂xF (U(x, t)) = S(U)∂xa, on RI × (tn, tn+1], (44)

subject to the initial condition

U(x, tn) =

{
Un

i−1, x < xi−1/2,
Un

i , x > xi−1/2.
(45)

Denote this solution by U(x, t;Un
i−1, U

n
i ). Use these solutions of the local

Riemann problems we define the function V by

V (x, t) :=

{
U(x, t;Un

i−1, U
n
i ), xi−1/2 < x ≤ xi, t

n ≤ t ≤ tn+1,
U(x, t;Un

i , U
n
i+1), xi < x ≤ xi+1/2, t

n ≤ t ≤ tn+1
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As for the initial values, we have to ensure that the approximation Un+1
i at

time tn+1 is constant on (xi−1/2, xi+1/2) for all i ∈ Z. Therefore, we define
the new value Un+1

i at the time t = tn+1 by

Un+1
i =

1

∆x

∫ xi+1/2

xi−1/2

V (x, tn+1)dx. (46)

This means Un+1
i is the mean value of V on (xi−1/2, xi+1/2) and thus contains

parts of U(x, t;Un
i−1, U

n
i ) and U(x, t;Un

i , U
n
i+1). To ensure that the solutions

of two consecutive local Riemann problems do not coincide, we assume that
the CFL condition holds:

∆t

∆x
max |λi| ≤

1

2
,

where λi denote the eigenvalues of DF (U).
Suppose now V is an exact solution on (xi−1/2, xi+1/2). Since the a-

component is constant in (xi−1/2, xi+1/2), the right-hand side of (1) vanishes
for V . Thus, the standard Godunov scheme is in quasi-conservative form:

Un+1
i = Un

i −
∆t

∆x
(F (U(xi+1/2−, tn+1;Un

i , U
n
i+1))−F (U(xi−1/2+, t

n+1;Un
i−1, U

n
i ))).

(47)
One might think that in the scheme (47) the source term is incorporated into
the local Riemann problem.

The Godunov scheme (47) is capable of capturing exactly equilibria.
Therefore (47) is a well-balanced scheme. In fact, let us be given the ini-
tial data U0 to be equilibrium states of a stationary wave. Then, on each
cell xi−1/2 < x < xi+1/2, t

n < t ≤ tn+1 the exact Riemann solution is
constant. Thus, U(xi+1/2−, tn;Un

i , U
n
i+1) = U(xi−1/2+, t

n;Un
i−1, U

n
i ) and so

Un+1
i = Un

i = U0
i for all i ∈ Z and n ≥ 0. When there are multiple Riemann

solutions, any of them can be taken. We note that this is still determinate,
as indicated by Theorem 3.2.

4.2. The computations of Riemann solvers

Given any Riemann data (UL, UR), denote by U(x, t;UL, UR) the Riemann
solution corresponding to the Riemann data (UL, UR). To build the Godunov
scheme (47) we will specify the values U(0±,∆t;UL, UR) for an arbitrary and
fixed number ∆t > 0.
Riemann solver (A1). We present a computing strategy for the Riemann
solutions (24) as follows.
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(i) The state U o
L = (ho

L, u
o
L, aR): ho

L = h̄(aR) = h1(aR) , where h1(aR) is
the smaller root of the nonlinear equation (16), described by Lemma
3.1, and can be computed using Lemma 2.3. uo

L = uLhL/h
o
L.

(ii) The state UM = (hM , uM , aR) is the intersection point of the wave
curves W1(U

o
L) and WB

2 (UR), see (13). Equating the u-component for
these two curves leads to a strictly increasing and strictly convex func-
tion in h. Thus, the h-component of the intersection point h2 can be
computed using the Newton’s method.

The Riemann solver (A1) relying on Construction (A1) yields

U(0−,∆t;UL, UR) = UL,
U(0+,∆t;UL, UR) = U o

L.
(48)

This implies that the Godunov scheme (47) using the Riemann solver 1 be-
comes

Un+1
i = Un

i −
∆t

∆x
(F (Un

i )− F ((Un
i−1)

o)), (49)

where U o defined as in (48).
Riemann solver (A2).

The states of the Riemann solution (26) can be found as follows.

(1) The state UM = (hM , uM , aR) is determined by

{UM} =W3(UL) ∩WB
2 (UR).

(2) The states U1 = (h1, u1, a1), U2 = (h2, u2, a1) are determined by using
the corresponding ”half-way” shifting in a component from the station-
ary contact from UL to U1 and the stationary contact from U2 to UM ,
and using the fact that U2 = U#

1 , (see Lemma 3.1):

a1 = aL +
u2

L−u2
1

2g
+ hL − h1 = aM +

u2
M−u2

2

2g
+ hM − h2,

u1 = uLhL

h1
,

h2 =
−h1+
√

h2
1+8h1u2

1/g

2
,

u2 = uMhM

h2
.

(50)
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It is not difficult to check that the system (50) can yield a scalar equation
for h1. The Riemann solver (A2) relying Construction (A2) gives

U(0−,∆t;UL, UR) = UL,
U(0+,∆t;UL, UR) = UM = UM(UL, UR).

(51)

This implies that the Godunov scheme (47) using the Riemann solver 2 be-
comes

Un+1
i = Un

i −
∆t

∆x
(F (Un

i )− F (UM(Un
i−1, U

n
i ))), (52)

where UM(Un
i−1, U

n
i )) is defined as in (51), i.e.

{UM(Un
i−1, U

n
i ))} =W3(U

n
i−1) ∩WB

2 (Un
i ).

Since UM plays a key role in this Riemann solver, we sketch a computing
algorithm for UM as follows. First we observe that if UR lies below the curve
W3(UL) in the (h, u)-plane, then UM is the intersection point ofW3(UL) and
SB

2 (UR). Otherwise, UM is the intersection point of W3(UL) and RB
2 (UR).

Thus,

(i) (Arrival by a 2-shock) If hRuR − hLuL < 0 then hM is the root of the
equation

G1(h) :=
hLuL

h
−
(
uR + (h− hR)

√
g

2
(
1

h
+

1

hR

)
)

= 0. (53)

(ii) (Arrival by a 2-rarefaction wave) Otherwise, hM is the root of the
equation

G2(h) :=
hLuL

h
− (uR + 2

√
g(
√
h−

√
hR)) = 0. (54)

It is easy to see that both functions G1, G2 defined by (53) and (54) are
strictly convex. Moreover, we have

G′1(h) = −hLuL

h2 −
√

g
2

(
1
h

+ 2
hR

+ hR

h2

)(
1

2
√

1/h+1/hR

)
< 0

G′2(h) = −hLuL

h2 −
√

g
h
< 0

for all h > 0. Thus, the Newton method can be applied for both equations
(53) and (54) with any starting point.
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Riemann solver (A3).
Let us consider Construction (A3) and let

A = U#
L , {B} =W1(UL) ∩WB

2 (UR).

It is easy to see that UM = (hM , uM , aL) lies onW1(UL) between A andB. We
propose a procedure similar to the Bisection method to compute the states
of the elementary waves of the Riemann solution (28) as follows. We use the
equation of WB

2 (UR) : Φ2(U ;UR) = 0, defined by (13), as a test condition:
for U above WB

2 (UR), Φ2(U ;UR) > 0 and for U below it, Φ2(U ;UR) < 0.
Using a stationary jump from any state U on the wave pattern of W1(UL)
between A and B to a state U o shifting a from aL to aR. Then, we have

Φ2(A;UR) · Φ2(B;UR) < 0.

Algorithm 1:
Step 1: An estimate for hM is given by

hM =
hA + hB

2
,

UM = (hM , uM , aL) ∈ W1(UL), so uM is computed using the equation (9)
with U0 = UL.

Step 2:

(a) If Φ2(A;UR) ·Φ2(UM ;UR) < 0, then set B = UM and return to Step 1;

(b) If Φ2(A;UR) · Φ2(UM ;UR) > 0, then set A = UM and return to Step 1;

(c) If Φ2(A;UR) · Φ2(UM ;UR) = 0, terminate the computation.

We can still use an alternative algorithm using the value of a-component
as a convergence condition, as follows.

Algorithm 2:

Step 1: Let A = U#
L and B is the intersection point of W1(UL) and

{u = 0}. An estimate for hM is given by

hM =
hA + hB

2
,

36



and uM is estimated using the equation (9), so an estimate of UM is UM =
(hM , uM , aL) ∈ W1(UL). An estimate for U o

M is given by

{U o
M} =W3(UM) ∩WB

2 (UR).

Determine the change in a-component for the stationary wave between UM

and U o
M (see (15))

a = aL +
u2

M − (uo
M)2

2g
+ hM − ho

M .

Step 2:

(a) If a− aR < 0, then set hA = hM and return to Step 1;

(b) If a− aR > 0, then set hB = hM and return to Step 1;

(c) If a− aR = 0, stop the computation.

The Riemann solver (A3) relying on Construction (A3) yields

U(0−,∆t;UL, UR) = UM = UM(UL, UR),
U(0+,∆t;UL, UR) = U o

M = (UM(UL, UR))o.
(55)

This implies that the Godunov scheme (47) using the Riemann solver 3 be-
comes

Un+1
i = Un

i −
∆t

∆x
(F (UM(Un

i , U
n
i+1))− F (U o

M(Un
i−1, U

n
i ))), (56)

where UM(Un
i , U

n
i+1) and U o

M(Un
i−1, U

n
i )) are defined as in (55).

Riemann solver (B1). The Riemann solver (B1) relying on Construction (B1)
gives

U(0−,∆t;UL, UR) = U1 =
(

( uL

3
√

g
+ 2

3

√
hL)2, 1

3
uL + 2

3

√
ghL, aL

)
:= UL,+ ∈ C+,

U(0+,∆t;UL, UR) = U2 := UL,+o ∈ G1,
(57)

If aL ≥ aR, then

U1 =
(

( uL

3
√

g
+ 2

3

√
hL)2, 1

3
uL + 2

3

√
ghL, aL

)
:= UL,+ ∈ C+,

U2 := UL,+o ∈ G1,
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where UL,+o ∈ G1 is the state resulted by a stationary contact from UL,+ ∈
C+. This implies that the Godunov scheme (47) using the Riemann solver
(B1) becomes

Un+1
i = Un

i −
∆t

∆x
(F (Un

i,+)− F (Un
i−1,+o)). (58)

If aL < aR, then U2 ∈ C+. The computing of U1 and U2 can be done similarly
as in the Riemann solver (A3).
Riemann solver (B2). The Riemann solver (B2) relying Construction (B2)
gives

U(0−,∆t;UL, UR) = U1 =
(

( uL

3
√

g
+ 2

3

√
hL)2, 1

3
uL + 2

3

√
ghL, aL

)
:= UL,+ ∈ C+,

U(0+,∆t;UL, UR) = P = P (UL, UR) ∈ WB
2 (UR) ∩W3(UL,+).

(59)
This implies that the Godunov scheme (47) using the Riemann solver 2 be-
comes

Un+1
i = Un

i −
∆t

∆x
(F (Un

i,+)− F (P (Un
i−1, U

n
i ))), (60)

where
P (Un

i−1, U
n
i )) =WB

2 (Un
i ) ∩W3(U

n
i−1,+).

Riemann solver (B3). The Riemann solver (B3) relying on Construction (B3)
yields

U(0−,∆t;UL, UR) = UM = UM(UL, UR),
U(0+,∆t;UL, UR) = U o

M = (UM(UL, UR))o.
(61)

This implies that the Godunov scheme (47) using the Riemann solver 3 be-
comes

Un+1
i = Un

i −
∆t

∆x
(F (UM(Un

i , U
n
i+1))− F (U o

M(Un
i−1, U

n
i ))), (62)

where UM(Un
i , U

n
i+1) and U o

M(Un
i−1, U

n
i )) are defined as in (61). It is easy to see

that the determinations of the states U(0−,∆t;UL, UR) and U(0+,∆t;UL, UR)
by Solvers (A3) and (B3) are the same.

The computing strategies for Solvers (B1), (B2), and (B3) are similar to
those of Solvers (A1), (A2), and (A3).
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4.3. Building Godunov scheme algorithm

Which Riemann solvers are taken in the Godunov scheme? As seen ear-
lier, in the regions where there are possibly multiple solutions one can take
any Riemann solution. Thus, there can be multiple choices to select a Rie-
mann solvers whenever there are several ones. And thus, there can be three
extreme cases by preferring one particular Riemann solver whenever it is
availbalbe. For example, if we prefer the solutions that has the stationary
contact wave in the same region as the left-hand state, then the solvers (A1)
and (B3) are selected. This selection gives an algorithm for building the
Godunov scheme described as follows.

Building Godunov Scheme Algorithm preferring solvers (A1) and (B3). Let
UL = Un

i and UR = Un
i+1.

If λ1(UL) ≤ 0
If Φ2(U

o#
L ;UR) < 0

Use Solver (A1)
elseif Φ2(U

#o
L ;UR) < 0

Use Solver (A2)
else

Use Solver (A3)
end

else
If Φ2(U

o
1 ;UR) > 0

Use Solver (B3)
elseif Φ2(U

#
2 ;UR) > 0

Use Solver (B2)
else

Use Solver (B1)
end

end

5. Numerical experiments (I)

We will demonstrate the efficiency of our Riemann solver in the Godunov
method by several numerical tests. For each test we measure the errors be-
tween the exact Riemann solution and the approximate solution by the Go-
dunov scheme (47) for x ∈ [−1, 1] with different mesh sizes of 500, 1000, 2000
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points. In this section as well as in the next section, we take the time t = 0.1,
the stability condition

C.F.L = 0.75

and the algorithm for selecting Riemann solvers as described at the end of
the last section, unless other information is given.

5.1. Test 1

This test indicates that the Godunov method is capable of maintaining
equilibrium states. Let

U0(x) =

{
UL = (hL, uL, aL), x < 0
UR = (hR, uR, aR), x > 0,

(63)

where UL = (1, 4, 1.1) and UR = (0.893267776689718, 4.477940550842711, 1).
It is not difficult to check that the Riemann problem for (1) with Riemann
data (63) admits a stationary contact between these equilibrium states:

U(x, t) = U0(x), x ∈ RI , t > 0. (64)

The Figure 11 shows that the stationary contact is well captured by Godunov
method using our exact Riemann solver for x ∈ [−1, 1] with the mesh sizes
of 500 points and at the time t = 0.1.

5.2. Test 2

In this test, we will approximate a non-stationary Riemann solution with
Riemann data UL, UR ∈ G1. Precisely, we consider the Riemann problem for
(1)-(2) with the Riemann data

U0(x) =

{
UL = (hL, uL, aL) = (0.3, 2, 1.1) ∈ G1, x < 0,
UR = (hR, uR, aR) = (0.4, 2.2, 1) ∈ G1, x > 0.

(65)

The Riemann problem (1)-(2) with the initial data (65) admits the solution
described by Construction 1, where

U1 = (0.21815897, 2.750288, 1)
U2 = (0.35252714, 1.9572394, 1).
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Figure 11: Test 1: A stationary contact wave is captured exactly by Godunov method
using our exact Riemann solver

The errors for Test 2 are reported in the Table 66.

N ||UC
h − U ||L1

500 0.012644
1000 0.0087928
2000 0.0063773

(66)

Figures 12, 13 and Table (66) show that approximate solutions are closer to
the exact solution when the mesh-size gets smaller.

5.3. Test 3

In this test, we will approximate a non-stationary Riemann solution with
Riemann data UL, UR ∈ G2. Precisely, we consider the Riemann problem for
(1)-(2) with the Riemann data

U0(x) =

{
UL = (hL, uL, aL) = (2, 0.1, 1.1) ∈ G2, x < 0,
UR = (hR, uR, aR) = (3, 0.12, 1) ∈ G2, x > 0.

(67)
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Figure 12: Test 2: Approximations for the water height with different mesh sizes

Figure 13: Test 2: Approximations for the water velocity with different mesh sizes
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Figure 14: Test 3: Approximations for the water height with different mesh sizes

The Riemann problem (1)-(2) with the initial data (65) admits the solution
described by Construction 7, where

U4 = (2.42606,−0.80076542, 1.1)
U5 = (2.528661,−0.76827417, 1).

The errors for Test 3 are reported in the Table 68.

N ||UC
h − U ||L1

500 0.041287
1000 0.023896
2000 0.014076

(68)

Figures 14, 15 and Table 68 show that approximate solutions are closer to
the exact solution when the mesh-size gets smaller.

The above tests show the convergence of approximate solutions to the
exact solution.

6. Numerical experiments (II). The resonance regime

In the following, we will consider the cases where the Riemann data on
the different sides with respect to C+:
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Figure 15: Test 3: Approximations for the water velocity with different mesh sizes

(i) UL ∈ G1 and UR ∈ G2;

(ii) UL ∈ G2 and UR ∈ G1.

The solution is evaluated for x ∈ [−1, 1] with the mesh size of 500 points
and at the time t = 0.1. We take also

C.F.L = 0.75.

6.1. Test 4

In this test, aL > aR, and there is a unique solution. We consider the
Riemann problem for (1)-(2) with the Riemann data

U0(x) =

{
UL = (hL, uL, aL) = (1, 3, 1.1) ∈ G1, x < 0,
UR = (hR, uR, aR) = (1.2, 0.1, 1) ∈ G2, x > 0.

(69)

We have

ho#
L = 1.042865405801653 < h#o

L = 1.213385283426733.
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Figure 16: Test 4: (Resonance case) Approximation of water height of the solution (28)

Figure 17: Test 4: (Resonance case) Approximation of water velocity of the solution (28)
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Figure 18: Test 5: (Resonance case) Approximation of water height of the solution (24)

Thus, the Riemann problem for (1)-(2), (69) admits a unique solution of the
form (24), according to Theorem (3.2), where

UM = (1.5521168, 1.4328264, 1.1), U o
M = (1.665941, 1.3349296, 1). (70)

The Figures 16-17 show that the Godunov scheme gives good approximate
solutions to the exact solution in this resonance case.

6.2. Test 5

In this test, aL < aR, and there is a unique solution. We consider the
Riemann problem for (1)-(2) with the Riemann data

U0(x) =

{
UL = (hL, uL, aL) = (0.2, 4, 1) ∈ G1, x < 0,
UR = (hR, uR, aR) = (0.5, 1.5, 1.1) ∈ G2, x > 0.

(71)

We have

U o#
L = (0.677264819960833, 1.181221844722815),

Φ2(U
o#
L ;UR) = −1.050411375011095 < 0,

U#o
L = (0.581828763814630, 1.374974992221044),

Φ2(U
#o
L ;UR) = −0.474326705580410 < 0.
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Figure 19: Test 5: (Resonance case) Approximation of water velocity of the solution (24)

Thus, the Riemann problem for (1)-(2), (69) admits a unique solution of the
form (24), according to Theorem (3.2), where

U o
L = (0.21591647, 3.7051366, 1.1), UM = (0.56185289, 1.7661913, 1.1).

(72)
The Figures 18-19 show that the Godunov scheme gives good approximate

solutions to the exact solution in this resonance case.

6.3. Test 6

Next, we provide a test for the case there are multiple solutions. So we
consider the Riemann problem for (1)-(2) with the Riemann data

U0(x) =

{
UL = (hL, uL, aL) = (0.2, 5, 1) ∈ G1, x < 0,
UR = (hR, uR, aR) = (0.75904946, 1.3410741, 1.2) ∈ G2, x > 0.

(73)
The Riemann problem (1)-(2) with the initial data (73) admits three

distinct solutions: one solution of the form (24) with

U o
L = (0.21984063, 4.5487497, 1.2), UM = (0.7964266, 1.4737915, 1.2) (74)
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Figure 20: Test 6: (Resonance case-Multiple solutions) Approximation of water height of
the solution (24) preferred Solver (A1)

Figure 21: Test 6: (Resonance case-Multiple solutions) Approximation of water velocity
of the solution (24) preferred Solver (A1)
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Figure 22: Test 6: (Resonance case-Multiple solutions) Approximation of water height of
the solution (26) preferred Solver (A2)

one solution of the form (26) with

UM = (0.75904946, 1.3174372, 1.2) (75)

which can be seen to be a stationary solution, and one solution of the form
(28) with

UM = (0.95328169, 0.89892673, 1), U o
M = (0.72279573, 1.1855776, 1.2).

(76)
We could have three extreme choices of a Riemann solver for the Godunov
method in this case. This can be seen easily by saying that we prefer a
particular Riemann solver whenever it is available.

We can see from Figures 20-21 that if the Solver (A1) is preferred when-
ever it is available, then the approximate solution approaches the exact so-
lution. The same observation for Solver (A2), see 22-23. However, it is not
the case for the Solver (A3): approximate solutions do not converge to the
exact Riemann solution by (28), see Figures 24-25.
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Figure 23: Test 6: (Resonance case-Multiple solutions) Approximation of water velocity
of the solution (26) preferred Solver (A2)

Figure 24: Test 6: (Resonance case-Multiple solutions) Approximation of water height of
the solution (28) preferred Solver (A3)
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Figure 25: Test 6: (Resonance case-Multiple solutions) Approximation of water height of
the solution (28) preferred Solver (A3)

6.4. Test 7

We consider the Riemann problem for (1)-(2) with the Riemann data

U0(x) =

{
UL = (hL, uL, aL) = (1, 2, 1.1) ∈ G2, x < 0 ∈ G1,
UR = (hR, uR, aR) = (0.8, 4, 1) ∈ G1, x > 0.

(77)

We have

h#
2 = 0.998204556070240 < ho

1 = 1.050890579855180,

where h#
2 , h

o
1 are defined as in Theorem (3.3). Thus, the Riemann problem for

(1)-(2), (69) admits a unique solution of the form (32), according to Theorem
(3.3), where

U1 = (0.77374106, 2.7536634, 1.1), U2 = (0.58589019, 3.636556, 1),
U3 = (0.6204785, 3.3318107, 1).

(78)

The Figures 26-27 show that the Godunov scheme generates approximate
solutions which do not approach the exact solution in this resonance case.
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Figure 26: Test 7: (Resonance case) Approximation of water height of the solution (32).
Godunov scheme generates approximate solutions which do not approach the exact solu-
tion in this resonance case.

7. Conclusions and Discussions

We provide above a full description of the Riemann problem for shallow
water equations. First, we establish for the first time the existence domain,
the uniqueness, as well as the case where there are multiple solutions. Second,
we provide the computing strategy for all the Riemann solutions. This par-
ticularly gives the rise to define the Godunov scheme for (1). The Godunov
scheme, as seen in Section 5, converges in strictly hyperbolic domains. When
data belong to both sides of the resonance curve, some tests give convergence,
and other tests give divergence. Furthermore, if the Godunov scheme takes
the states on the resonance curve give unsatisfactory results.
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